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A LOCAL COORDINATE APPROACH IN THE MLPG METHOD FOR BEAM

PROBLEMS

I.S. Raju and D.R. Phillips*
NASA Langley Research Center

Hampton, VA

ABSTRACT

System matrices for Euler-Bernoulli beam problems for the meshless local

Petrov-Galerkin (MLPG) method deteriorate as the number of nodes in the beam models

are consistently increased.  The reason for this behavior is explained.  To overcome this

difficulty and improve the accuracy of the solutions, a local coordinate approach for the

evaluation of the generalized moving least squares shape functions and their derivatives

is proposed.  The proposed approach retains the accuracy of the MLPG methods.

INTRODUCTION

Meshless methods are increasingly being viewed as an alternative to the finite

element method [1-3].  Recently, a meshless local Petrov-Galerkin (MLPG) method has

been presented for C0 and C1 problems [3,4].  In these methods, moving least squares

(MLS) interpolants [1] are used for C0 problems and generalized MLS interpolants are

used for C1 problems [4].  References 3 and 4 showed excellent performance of the

MLPG method for potential and elasticity problems and a good performance for beam

problems.

*Joint Institute for Advancement of Flight Sciences – George Washington University,
work performed under grant NCC1-384.
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When all the chosen parameters in the MLPG method are held constant and the

number of nodes in the models are consistently increased, the error norms do not

decrease; rather they show increases compared to coarser idealizations.  The reasons for

this behavior are studied.  A local coordinate approach to the MLS interpolation is

proposed.  The proposed local coordinate approach is implemented and evaluated  by

applying it to three simple test cases.

BEHAVIOR OF THE MLPG METHOD WITH MESH REFINEMENT

The notation of reference 4 is used in this note for brevity and convenience in

presentation.  The MLPG equations are

(1)

where

(2)

are the fictitious nodal values of deflections u and slopes θ, and the matrices in Eq. (1)

are defined as in Eq. 35-36(g) of reference 4.

The MLPG equations are derived using a weighted residual weak form of the

governing equations.  The trial functions used for the beam problems are derived using

the generalized MLS interpolation [4] as

(3)

where

(4)

with

(5)
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In Eq. (5) P is an (n,m) matrix and w is an (n,n) matrix defined as

(6)

(7)

where                    , and

(8)

with (m-1) as the order of the basis function p(x) used in the MLS approximation.  The

weight functions            chosen are

(9a)

and

(9b)

where di = || x – xi ||.   The test function vi(x) in the MLPG weak form is chosen as

(10)

Note that the lengths Ri and Ro in Eqs. (9) and (10) are user defined in the MLPG method.
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In the current implementation a beam of length 4l is considered, as the choice of

unit beam length l would mask numerical errors.  Six models with 5, 9, 17, 33, 65, and

129 nodes uniformly distributed along the length of the beam are considered.  The model

with 17 nodes is presented in Figure 1.  The distance between the nodes (∆/l) in these

models are 1.0, 0.5, 0.25, 0.125, 0.0625, and 0.03125 for the 5-, 9-, 17-, 33-, 65-, and

129-node models, respectively.  The (Ro / l) in the test functions (Eq. 10) in each of these

six models is different and is chosen equal to (2∆).  The (Ri / l) in Eq. (9) is chosen to be

(Ri / l = 3.5) for the 5-, 9-, and 17-node models and (Ri / l = 16∆) for the 33-, 65-, and

129-node models.  Two types of basis functions, quadratic basis (1, x, x2) and cubic basis

(1, x, x2, x3), are used.  System matrices in Eq. (1) are developed with these parameters.

The resulting system equations must be able to reproduce the constant, linear, and

quadratic terms exactly when the quadratic basis is used, and additionally, the cubic term

when the cubic basis is used.  To evaluate the system matrices developed for the six

models, two rigid body conditions and a constant-curvature condition were considered.

These can be written as

(11)

where c0, c1, and c2 are arbitrary constants.  The third condition in Eq. (11) corresponds to

the problem of a cantilever beam with a moment,                                   , applied at x = 4l.

The problems described by Eq. (11) are simple test problems and should be reproduced

exactly by the MLPG when quadratic or higher bases are used.
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The {d} vectors that correspond to each of the conditions in Eq. (11) (and in the

absence of any other loading) when used in Eq. (1) should result in a null right-hand

vector if the Ki
(node) is evaluated exactly.  In general, the product results in a residual

{r}vector as

(12)

Each of the components of the vector {r} is nearly equal to machine zero if Ki
(node) is

evaluated accurately.  To quantify the residual, an error norm of {r} is computed as

(13)

where rk is the kth component of the vector {r} in Eq. (12) and Nd is the degrees of

freedom in the model.

Table 1: Error norm ||E||1 of the residuals for six models and for two basis functions
u=c1 u=c2x u=c3x

2Number of
nodes in
the model

Quadratic
Basis

Cubic
Basis

Quadratic
Basis

Cubic
Basis

Quadratic
Basis

Cubic
Basis

5* 0.5040e-14 0.1278e-12 0.2099e-14 0.4547e-13 0.5733e-14 0.9196e-13
9* 0.7515e-13 0.1496e-11 0.2362e-13 0.5514e-12 0.3321e-13 0.9747e-12
17* 0.2774e-10 0.8211e-10 0.1109e-10 0.3067e-10 0.1582e-10 0.5352e-10
33 0.3609e-9 0.1062e-5 0.1266e-9 0.4479e-6 0.2587e-10 0.9057e-6
65 0.1691e-6 0.1435e-2 0.7735e-7 0.5855e-3 0.1726e-6 0.1193e-2
129 0.1796e-4 0.5599e+0 0.8154e-5 0.2269e+0 0.1794e-4 0.4154e+0

* Ri / l = 3.5

Table 1 presents the ||E||1 for the three conditions in Eq. (11) when the weight

function in Eq. (9b) is used.  (Similar results are obtained when weight function (9a) is

used and hence these results are not presented here.)  As seen from the table, the ||E||1

deteriorates with model refinement and for higher order basis.  Closer examination of the

residuals for each of the six models showed that the residuals were of machine accuracy

for nodes near the origin while the residuals were largest at nodes farthest from the
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origin.  This observation was confirmed by running different cases with the origin at

different locations along the length of the beam.  Also, the residuals were largest for the

models with the largest number of nodes.

Closer scrutiny of computations showed that the numerical values of the shape

functions for nodes that are systematically located about the center of the beam (for

example, nodes 3 and 15, 2 and 16, and 1 and 17 in the 17-node model of Figure 1) are

not exactly identical as expected.  These differences increased with model refinement and

when a higher basis was used. The error norm in Table 1 can be improved by using

higher precision computations or inversion routines.  However, a much simpler

alternative to improve the accuracy is presented below.

LOCAL COORDINATE APPROACH

In the MLS interpolation, the basis functions are in terms of the global coordinate

x.  The [A] matrix thus formed using this basis is generally of the form (see Eq. 16, ref. 4)

(14)

where                   and M are the number of nodes in the domain of definition of node j for

which the [A] matrix is being computed.  (For convenience in presentation, the [A]

matrices thus formed will be referred to as the global method.)  As the order of the

polynomial basis increases the conditioning of the [A] matrix deteriorates.  For example,

the matrix [A] will have terms like 1, x2, x4, x6 on the diagonal for a cubic basis function.

The [A] matrices for nodes near the origin and the [A] matrices for nodes farthest from

the origin will be different.  The conditioning is worse for [A] matrices for nodes farthest

from the origin.  This explains the differences in the error norms observed in Table 1.
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The situation can be easily rectified if the MLS approximation is defined not in terms of a

global basis, but rather in terms of a local basis.  Figure 2 shows two identical shape

functions, one centered at node j, and the other centered at node e. The global

approximation for

(15)

can be rewritten in the neighborhood of node j, recognizing that x = xj + ξ where ξ is a

local coordinate measured from node j, as

(16)

where bi, i=1,…, m-1 are the new undetermined coefficients in the MLS approximation.

(A similar local coordinate transformation can be affected for node e in Figure 2 as

x = xe + ξ.)  The [A] matrix then is computed in a similar manner as in Eq. (14) but with

(17)

LOCAL COORDINATE APPROACH RESULTS

The local coordinate approach is implemented in the evaluation of the shape

functions and their derivatives for all the nodes in the six MLPG models of the beam.
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beam using global and local coordinate methods.  The condition numbers are evaluated

using routines available in NAPACK and the procedure outlined in references 5 and 6.

When the global coordinate method is used, the condition numbers of the [A] matrices

for nodes farthest from the origin are much larger (suggesting poor conditioning) than the

nodes closest to the origin.  The conditioning numbers of the [A] matrices vastly improve

when the local coordinate method is used, clearly demonstrating the advantages of the

local coordinate method.

Table 2: Comparison of the condition numbers of the [A] matrices at various
locations on the beam using global and local coordinate methods

Number of nodes in the model
5* 9* 17* 33 65 129

Location
on the
beam (x/4l) Global Method Conditioning Number
0.0 0.631e+3 0.106e+4 0.930e+3 0.271e+3 0.267e+3 0.189e+4
0.5 0.231e+5 0.268e+5 0.272e+5 0.785e+5 0.904e+6 0.131e+8
1.0 0.914e+6 0.771e+6 0.127e+7 0.422e+8 0.153e+10 0.365e+11

Local Method Conditioning Number
0.0 0.634e+3 0.106e+4 0.930e+3 0.271e+3 0.267e+3 0.189e+4
0.5 0.478e+3 0.496e+2 0.411e+2 0.111e+2 0.153e+2 0.141e+3
1.0 0.632e+3 0.106e+4 0.930e+3 0.271e+3 0.267e+3 0.189e+4
* Ri / l = 3.5

Table 3: Error norm ||E||1 of the residuals computed with the local coordinate
approach

u=c1 u=c2x u=c3x
2Number of

nodes in
the model

Quadratic
Basis

Cubic
Basis

Quadratic
Basis

Cubic
Basis

Quadratic
Basis

Cubic
Basis

5* 0.1173e-14 0.3500e-13 0.2342e-15 0.1201e-14 0.3174e-14 0.3853e-13
9* 0.2521e-13 0.4900e-13 0.8357e-14 0.1699e-13 0.3659e-13 0.4146e-13
17* 0.1392e-12 0.2169e-12 0.4764e-13 0.1680e-12 0.2126e-12 0.8124e-12
33 0.4389e-12 0.1390e-11 0.1876e-12 0.5060e-12 0.4084e-12 0.2183e-11
65 0.4196e-11 0.3890e-11 0.1142e-11 0.1879e-11 0.2548e-11 0.5930e-11
129 0.4029e-10 0.2778e-10 0.1240e-10 0.8191e-11 0.2400e-10 0.2166e-10

* Ri / l = 3.5

The error norms shown in Table 1 are recomputed and the results are presented in

Table 3.  As expected, all models and the quadratic and cubic basis functions produced
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the error norms close to machine accuracy, suggesting that the local coordinate approach

produces accurate results compared to the global coordinate approach.

COMPUTATIONAL ADVANTAGE OF THE LOCAL COORDINATE APPROACH

In the conventional MLPG implementation, the [A] matrix is calculated and

inverted at every node in the model.  When using the local coordinate methodology with

uniform nodal spacing, the shape functions are exactly identical for nodes whose Ri

places the entire shape function in the interior of the domain of the problem.  Hence, for

those nodes the [A] matrices are identical.  As such, considerable reduction in

computational effort and cost can be achieved by the proposed local coordinate approach

thus eliminating a perceived disadvantage of the MLPG method.

CONCLUDING REMARKS

The MLPG method for beam problems (C1 problems) showed that the solutions

deteriorated as the number of nodes in the models were progressively increased.  Closer

examination revealed that the moving least squares (MLS) shape function calculations

involved the computation of the [A] matrix and that this matrix became ill conditioned

for nodes farthest from the origin.  To overcome this difficulty a local coordinate

approach for the MLS basis functions was proposed.  The proposed approach restored the

accuracy of the MLPG method for beam problems.
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